Showing posts with label ad joint. Show all posts
Showing posts with label ad joint. Show all posts

HOW TO SOLVE LINEAR EQUATIONS OF TWO AND THREE VARIABLES BY MATRIX METHOD

Today we are going to learn, how to solve system of linear equations of 2 and 3 variables using matrix method. So using matrix method to solve system of linear equation , we must know some topics such as co-factor of element, Transpose of matrix , Ad joint of a Matrix, Multiplication of two Matrices ,Determinant value of a Matrix ,Inverse of a matrix etc. Let us understand the process of finding the solution of system of linear equations with the help of some examples.


To Solve the system  of Linear Equations using 2×2 Matrix Method


x - 5y = 4

2x + 5y = −2


Writing this system of equation in Matrix form

AX = B 


where X = A-1 B------------------------(1)


And A-1 = (1/Det A ) ( Ad joint A)



Where



We need the inverse of   , which we write as   A-1 
To find the inverse 1st find out Co-factor Matrix of A

Ad joint  A  =   (     5    5 -2   1   )


Co factor   A  =   (     5    −2 5   1   )

As we know the Ad joint Matrix of any matrix can be found by taking the transpose of the Co Factor matrix.

Now let us find the determinant of  A


A∣ = 5 − (-10) = 15 , which is non Zero,


Therefore A-1 
 Exists     ,So





Now putting the value of inverse of Matrix A in equation (1)


How to solve system of linear equations







Now putting the elements of Matrix X , and 
By the equality of two Matrices ,their elements in respective positions are equal to each others,


Hence x= 2/3  and y = -2/3

How to check the correctness of a solution
put x=  2/3  and y = -2/3  in the given  equations  
x - 5y = 4 implies 2/3 - 5(-2/3) = 2/3+10/3 = 4

and 2x + 5y  = -2 implies 2*(2/3) + 5(-2/3) = 4/3-10/3 = -6/3= -2

therefore both equations are satisfied by these values of 'x' and 'y'

To Solve the system of Linear Equations using 3×3 Matrix Method

 x  - y + z   = 4
2x + y - 3z  = 0
 x + y + z    = 2

Converting this system of Linear equations into Matrix Form

AX    =  B 

X  =   A-1  B ----------------------------------(1)
Where




Now we have to find the  A-1 . , and it will exist if its determinants value |A| must be non Zero. Let us find |A|

determinant value


    




 |A|= 1{1×1-(-3)×1}-(-1){2×1-(3)×1}+1(2×1-1×1)

|A|= 1 {1+3}+1 {2+3}+1 {2-1}

|A|= 4+5+1 = 10

Since |A| is non Zero , Therefore inverse of A exists .

We have to find the Co factors of all the elements of matrix A . Let us find out the co factors of all the elements of matrix row wise.

Co-Factors of 1st Row

     
            co-factor of A11  =   4
            co-factor of A12  =  -5
            co-factor of A13  =   1



Co-Factors of 2nd Row

            co-factor of A21  =   2 
            co-factor of A22  =   0
            co-factor of A23  =  -2


Co-Factors of 3rd Row


              co-factor of A31  =  2

              co-factor of A32  =  5
              co-factor of A33  =  3

Now co Factor matrix of A can be written as follows





Now to find the Ad joint of this Matrix, Take the transpose of this Matrix, 


As we know the Inverse of a Matrix  is the scalar  multiplication of Ad Joint Matrix of Matrix A and reciprocal of Determinant value of the Matrix A.










Putting the values of Inverse of A and Matrix B in equation (1), So after Multiplication of these two matrices ,we get


\displaystyle={\left(\begin{matrix}{22}\\-{16}\\-{16}\end{matrix}\right)}

Now putting the values of elements  of   Matrix X, and equating the elements in their respective positions .



















Now using the property of equality of two Matrices , All the elements in their respective position are equal to each other , we get

 x = 2  , y = -1, z = 1  is the solution of the system of linear Equations.

Conclusion


In this post I  discussed the method of solving the System of linear Equations with the help of Matrix Method , If you liked the post please share it with your friends , And in case of any improvement please make use of Comment Box . To keep on supporting me follow my Blog . Thanks for your valuable time to read this post .We shall meet you in next post ,till then BYE.
Share:

MATRIX , DIFFERENT TYPES OF MATRICES AND DETERMINANTS


Hello every one ,Welcome once again, Today we are going to discuss What is the  matrix, elements of a matrix, order of a matrix, different types of matrix , transpose of matrix, ad joint of matrix, determinant  and  how to find the determinant of a matrix .




What is  Matrix

Matrix definition

A Matrix is a set of elements ( Numbers ) arranged in a particular numbers of Rows and columns in a rectangular table. Matrices inside parentheses ( ) or brackets [ ] is the matrix notation.

Here we have an examples of Matrices . 



The elements which are written in horizontal lines are called Row and elements which are written in Vertical lines are called Column. In the matrix A above ↑ the elements 5, 3, -2 are written in Row wise whereas the elements 5,4,3 are written columns wise, Similarly the elements 4,-1,7 are written in Row wise whereas the elements 3,-1,4 are written columns wise .


Order Of a Matrix

If any matrix have "m" number of rows and "n" number of columns , then "m×n" will be the order of that matrix. It is also called matrix dimensions . For  matrices  given below ,

[      5      6    -4    2    ]   This  matrix has 1×4 order,


    3
[  8 ]  Matrix has 3×1 order ,
   -2 

  [  -Matrix has 1×1 order.

And the matrices A,B,C and D  above have 3×3 ,2 ×2 , 3×4 and 3×2  respectively, as Matrix A has 3 rows and 3 columns, matrix B has 2 rows and 2 columns, Matrix C has 3 Rows and 4 Columns Similarly Matrix D has 3 rows and 2 columns.


Elements of a matrix

The Elements are entries or numbers used in the matrix . These are denoted by aij , where i is the row's number and j is the column's number in which the element is lying.

Consider the matrix A above which has elements  5 ,3,-2 in the 1st rows 4, -1,7 in the 2nd row and   3,4, -1 in the 3rd rows.

Types of matrix

Equality of Matrices



Two matrices are said to be equal ,if they have same order and same  elements at corresponding positions.



If we compare matrices A,B,C and D given above then the matrices A and B may be equal to each other provide x = 6 and y = 3, Similarly Matrices C and D may be equal to each other provided x = 8 ,y = 7 and z = 3 .



Note that Matrices A and C can not be equal to each other, because A and C have not same order. Similarly B and D can not be equal to each other as B and D have different order.

Square Matrix

Any Matrix which have equal numbers of rows and columns,Then   That Matrix is called Square matrix .  A,B,C,D,E and F Matrices given below and above  are the examples of Square Matrix.


Zero , Scalar And Diagonal Matrix

Zero Matrix

If all the elements of a matrix are equal to zero then the matrix  is called Null Matrix ,It is also called Void Or Null Matrix. Matrices A  ,B and C given below are the example of Zero Matrices, As all these matrices have all the elements  zeros. so these matrices are Zero Matrices.

Diagonal Matrix


A Diagonal matrix is a square matrix in which all the elements are zero except diagonal elements . Matrices D ,E and F given below are examples of   Diagonal matrix of  2 × 2 Diagonal matrix and 3×3 orders . 

Scalar Matrix


A Diagonal matrix  matrix in which all the elements are zero and diagonal elements are equal to each others. Matrices A,B,C,D,E and F are examples of Scalar Matrices .Given Matrices D ,E and F given below are examples of   Diagonal matrix of  2 × 2 Diagonal matrix ,3×3  and 3×3 orders respectively . 



Identity Matrix


The Identity Matrix, symbolised as I, is a square matrix. where all the elements are 0 except the diagonal elements  , and all the diagonal  elements equal to one. Identity matrix is also called Unit Matrix.


Above two  examples are  3 × 3 and 2×2 Identity matrices respectively . 1st matrix is an example of  3 × 3 matrix and 2nd is an example of 2×2 Identity matrix. Because both the matrices have diagonals elements one and remaining elements  zeros. Identity Matrices and Unit Matrices are also the examples of Scalar Matrices



Row matrix


Any matrix which has only one row is called Row Matrix.  The  Row matrix may have any numbers of  columns .


[      5      6    -4    2    ] ,     [  2    5   ] ,    [-4    6    -6    0 ]

,[      7      4     3    -3    ]


Column Matrix


Any matrix which has only one column is called Column Matrix. The  Column matrix may have any numbers of Rows.

  
    3
[  8 ] ,      [  -1 
    -2

Transpose of matrix


The transpose of any matrix is obtained by transfer of Rows into Columns and vice versa. i.e transforming 1st row to 1st column and transforming 2nd row to 2nd column and so on for 3rd ,4th and 5th rows and columns.

To find the transpose of any matrix , Shift all the elements of all the Rows into respective Columns. Given below matrices have their transpose written on the right side of them.


It  can be seen that in all the examples given above all the elements of particular row have been changed to corresponding column. So A' is the transpose of  Matrix A ,similarly B' is the transpose of  Matrix B .

Determinant of a matrix



A determinant is a square array of numbers which represents a certain sum of products. we can find out a fixed value of determinant, consider an example of a 3 × 3 determinant , it has 3 rows and 3 columns).

Minor of an Element


The minor of an element aij is the determinant obtained by deleting the ith row and the jth column and is denoted by Mij .


Co factor of an Element

The co-factor of an element aij is the determinant obtained by deleting the ith row and the jth column and is multiplied by(-1)^(i+j)and is denoted by Cij. and Cij= (-1)^(i+j)×Mij

We can find the value of a 2 × 2 determinant   as follows  ,1st we multiply the  top left × bottom right first then subtract from it the product of top right element and left bottom. or 

(1st element in 1st row) × [Its Co factor] - (2nd element in 2nd row)× [Its Co factor].


 

Determinant value of above matrix is 4×5-(-3)×5= 20+15=35

How to find the determinant of a 3x3 matrix  


To find the determinant value 3×3 determinant .
1st element in 1st row ×[Its Co factor]-2nd element in 2nd row[Its Co factor]+3rd element in 3rd row [Its Co factor ].

Let us calculate the determinant value of 3×3 matrix  given above 

=2[(-4×-7) - (2×5)] - (-1) [3×(-7) - (2×5)]+ 5[(3×5) - (-4)×5]
=2[28-10]+1[-21-10]+5[15+20]
=36 - 31+75
=80

Ad joint of a Matrix


The transpose of a co factor matrix of any matrix is called ad joint of the Matrix.To find the ad joint Matrix ,1st find the co factors of  all the elements of given Matrix A.
Co factors of 1st row of  Matrix A are 7 and 5
Co factors of 2nd row of Matrix  A are -2 and -3

,then form the Matrix of these  co factors and name it Co factor  matrix, and after that take the transpose of the co factor matrix so formed.Then we have  transpose of the Ad joint of Matrix.





Conclusion


Thanks for giving your valuable time to the post "What is matrix, element of matrix, dimension of matrix, different types of matrix, transpose of matrix, ad joint of matrix, what is a determinant ,  determinant of 3x3 matrix ,  determinant of a 2x2 matrix " of this blog .If you found this post helpful to you , then share it with yours friends and family members . Also follow me on my blog for notifications of next posts.We shall meet again in next interesting and educating post , till then Good Bye. Take care ....
Share:

Popular Posts